DC/DC kapcsolóüzemű feszültségátalakítók működése
A DC/DC konverterek napjaink telepes táplálású elektronikai készülékeinek elengedhetetlen alapelemei, hiszen ezek áramkörei gyakorta különböző tápfeszültséget igényelnek, de helyhiány miatt általában nincs lehetőség többfajta elem használatára.

 

A megoldás DC/DC átalakítók használata lehet, melyek segítségével akár a telepfeszültségnél nagyobb feszültség is nyerhető. A kimenet általában szabályozott, mely nagyon előnyös, amikor a telepfeszültség a tárolt energia elvesztésekor csökkenni kezd. Azokat a DC/DC átalakítókat, melyek a bemeneti feszültségnél kisebb kimeneti feszültséggel rendelkeznek, „step-down” vagy „buck” konvertereknek, a nagyobb feszültséget előállító verziókat pedig „step-up” vagy „boost” konvertereknek hívjuk.

A feszültségátalakítók általános áttekintése

A telepfeszültségtől eltérő feszültségeket többféle módon állíthatunk elő, például ellenállás-alapú feszültségosztóval, vagy lineáris feszültségszabályzók használatával. De ezek a megoldások csak a telep feszültségénél kisebb értékek előállítására alkalmasak, és a hatásfokuk is alacsony – amennyiben a feszültségesés magas, és az áramerősség nagy, a felesleges energia hő formájában disszipálódik.

Sokkal kifizetődőbb a kapcsolóüzemű DC/DC átalakítók használata, melyek az energiát ideiglenesen mágneses vagy elektromos térben tárolva, és azt a megfelelő időben felszabadítva, a kimeneten a bemenettől eltérő feszültséget állítanak elő. A hatásfok jelentősen nagyobb, ami a telep élettartamának növekedéséhez vezet.

Step Down / Buck átalakítók

A bemeneti feszültségnél (Vin) a kimeneten alacsonyabb feszültséget (Vout) előállító DC/DC konvertereket „step-down” vagy „buck” konvertereknek nevezi a szakirodalom. A működési elvük az első ábrán látható ideális áramkör segítségével értelmezhető. Az áramköri képen látható kapcsoló reprezentálja azt a komponenst, ami a telep folyamatos le- és visszakapcsolásáról gondoskodik, és ami valójában egy MOSFET vagy egy IGBT.

Az induktivitás az energia tárolására szolgál, a telep bekapcsolása utáni tranziens a mágneses mező felépülése folytán feszültségesést indukál, mely a terhelésre jutó feszültséget csökkenti. Ha a kapcsoló a tér felépülésének befejeződése előtt újra kinyit, a kimenetre jutó feszültség folyamatosan a telep feszültsége alatt marad.

 

Buck konverter működése

 

Ebben a pillanatban a flyback dióda kinyit, újra zárt áramkör jön létre, és az induktivitás mágneses terében tárolt energia újra elektromos energiává alakul, és áramot hajt át a terhelésen. Addig, amíg a kikapcsolt állapot rövidebb, mint a tekercs mágneses mezejének leépülési ideje, a terhelésen az induktivitás folyamatos áramot hajt át, a kimeneti feszültség átlagértéke pedig a bemeneti feszültség értéke alatt marad. A párhuzamosan kapcsolt kondenzátor a kapcsolgatás miatti folyamatos fluktuáció keltette ripple feszültség simítására szolgál.

Amennyiben működés közben az induktivitás árama sohasem csökken nullára, folyamatos működési módról beszélünk. Amennyiben a tekercsben tárolt energia nem elegendő a kikapcsolási fázis teljes hossza alatt az áram fenntartásához, az időnként nullára csökken, szakaszos üzemben működik a DC/DC konverter. A különbségek a lenti ábrán láthatók:

 


Folyamatos működés | Szakaszos üzem

 

Szinkron DC/DC konverterek

A buck konvertereknek létezik egy a hagyományos áramköri elrendezésből származtatott továbbfejlesztett változata is, ahol a flyback diódát egy a felső kapcsoló működésével ellentétes fázisú kiegészítő vezérléssel ellátott második kapcsolóeszköz (alsó kapcsoló) helyettesíti. Ez az eszköz is a valóságban egy MOSFET vagy IGBT, melynek RDSon értéke a flyback diódáénál nagyságrenddel kisebb, így az eredetileg a diódán eső feszültség miatti veszteségek minimalizálhatók.

Természetesen mindkét esetben a veszteség az aktív ciklusidő (duty cycle) hosszával arányos. Másik előnye ennek az elrendezésnek az eszköz bidirekcionális volta. Azonban az előnyöknek ára van, a jobb jellemzők drágább áramköri megoldásokkal párosulnak.

A New Japan Radio NJW4177 kapcsolóüzemű feszültségszabályzó IC-je egy ilyen szinkron „buck” DC/DC konverterhez használható. A beépített 40V/2A MOSFET széles bemeneti feszültségtartományon (3,6 V–40 V) való működtetést tesz lehetővé. 300 kHz vagy 450 kHz kapcsolási frekvenciájú változatok kaphatóak. A beépített fáziskiegyenlítő áramkör és a soft-start funkció lehetővé teszi a külső komponensek számának minimalizálását. Az áramszabályzásos működési mód miatt a kis ESR értékű MLCC kondenzátorok is használhatóak, így jelentősen csökkenthető a tápegységhez szükséges hely a nyomtatott áramkörön.

 

NJW4177 Step down konverter 

 

Kis terhelések esetén a szokásos impulzusszélesség modulációs elven működő feszültségszabályzók hatásfoka erősen csökken, ami főleg elemes táplálás esetén jelent gondot, mert a telep gyorsabb lemerüléséhez vezet. Az NJW4177 ilyen esetben PFM (impulzus frekvencia modulációs) módban is használható, mely a FET kapcsolási veszteségeinek csökkenésén keresztül pozitívan hat a hatásfokra.

Alkalmazása elsősorban a gyors tranziens választ igénylő tápellátású mikroprocesszor vagy digitális hangprocesszor áramkörök területén indokolt, de az autóelektronikai kiegészítők, valamint akkumulátoros készülékek tápellátása is biztosítható vele, ahol fontos a kis szivárgási áram eléréséhez szükséges engedélyező bemenet megléte és az alvó módban minimális standby áram (<5 μA).

 

NJW4152 áramköri elrendezés

 

Egy másik termék az NJW4152 buck konverter 40V/600mA vagy 40V/1A MOSFET-tel, melyet 4,6 V–40 V bemeneti feszültségtartomány jellemez. Az induktivitás áramát érzékelve a kimeneti feszültség kerül visszacsatolásra (current mode control). A kapcsolási frekvencia 300 kHz és 1 MHz között választható, nagyobb kapcsolási frekvencia esetén kisebb méretű tekercs is elegendő. A kimeneti feszültség 0,8 V és a (Vin-1V) közötti értékek közé állítható. Alkalmazási területe elsősorban autóelektronikai kiegészítők, irodaautomatizálási készülékek és ipari szerszámok tápellátása.

Step Up / Boost konverterek

Azokat a DC/DC konvertereket, melyeknek a kimeneti feszültsége a bemeneti feszültségük felett van, step-up vagy boost konvertereknek nevezzük. Az ideális kapcsolásuk és a működési alapelvük az alább ábrán tekinthető át:

 

 

Boost konverter működése

 

Amikor a kapcsoló bekapcsolt állapotban van, az induktivitás elkezd töltődni, mágneses tere felépül, miközben a terhelésre jutó feszültség nulla. A kapcsoló kikapcsolásakor a tekercsben tárolt mágneses energia ismét elektromos energiává alakul, és a telep mellett másodlagos feszültségforrásként táplálja az áramkört, a diódán keresztül a telep feszültségénél nagyobb feszültséggel kezdik el táplálni a terhelést és tölteni a kimeneti kondenzátort. Amikor a kapcsoló ismét kikapcsol, a kondenzátor elkezd kisülni. Ha a kapcsolgatás elég gyors ahhoz, hogy a kondenzátor ne süljön teljesen ki, a következő ciklus előtt, akkor a terhelésre jutó feszültség értéke mindig a bemeneti feszültség felett marad.

 

 

NJW4141 Boost üzemmódban

 

 

 

NJW4140 Flyback elrendezésben

 

Az egyik népszerű boost konverter a New Japan Radio NJW4140 IC-je, mely N csatornás beépített MOSFET-jével nagy áramú alkalmazásokban használható, széles 3,0 V–40 V bemeneti feszültségtartománnyal rendelkezik, és néhány külső áramköri elem felhasználásával kiváló megoldás lehet boost / flyback konverterként autókiegészítők, irodai eszközök tápellátására, valamit LED vezérlésére is. Beépített túláram és túlmelegedés elleni védelemmel van ellátva.

 

Cikkünk az Endrich Bauelemente Vertriebs GmbH közreműködésével készült. Szerzője Kiss Zoltán Kelet-Európai értékesítési vezető, kiemelt nemzetközi ipari kapcsolatokért felelős vezető.
 
Értékesítési iroda: H-1188 Budapest, Kölcsey u. 102/A.
 
E-mail: z.kiss@endrich.com
 
Web: www.endrich.com
 
További konzultációért és mintákért, adatlapokért keresse Kiss Zoltánt!

 

Önvezető autók utasainak reakcióit vizsgálták a kutatók
Váratlan helyzetekben vizsgálták az önvezető autók utasainak reakcióit a Szegedi Tudományegyetem (SZTE) kutatói együttműködve a HUN-REN és a Budapesti Műszaki és Gazdaságtudományi Egyetem szakembereivel. Az eredményeikről a Nature-ben megjelent cikkükben számoltak be.
Ami jól működik, azon ne változtass! De azért fejleszteni érdemes…
Szabványosít és digitalizál a TRUMPF a karbantartás terén, ami a hibaelhárítás egyre javuló eredményeiben fizetődik ki.
Hogyan gondolkodik a generatív MI? Szegedi kutatók keresik a választ a chatbotok titkaira
A mesterséges intelligencia (MI) egyre több feladatban segít minket a mindennapokban, de mi történik egy chatbot „fejében”, amikor választ ad egy kérdésre vagy értelmez egy utasítást?
Ízletes garnéla az osztrák Alpokból
A hegyekből az asztalra: a zenon megteremti a fenntartható garnélatelepek feltételeit. A White Panther az óceánoktól távol tenyészti a garnélákat az osztrák Alpok közepén. A cég fenntartható gyártási módszereket alkalmaz.
Tűzoltás helyett stratégia
Prediktív karbantartási rendszert vezetett be a kulcsfontosságú megmunkálógépére a maklári Bosch gyár. Az üzemeltetők és karbantartók sok üzemben még ma is nagyrészt rutinból végzik a karbantartást, ha éppen nem tüzet oltanak.